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  يصمم ويشيدالمهندس المدنية أهمية آبرى لمعظم التخصصات المختلفة، فتمثل عملية انتاج نماذج التضاريس الرقمي
آذلك ن يهتمون بشكل الأرض و والجيوديسأما دراسة ما بداخلها ؛ يقوم ب يالجيولوجو المباني علي سطح الأرض،

وعلى  .ات فى شكل النموذج الرقمى للارتفاع بطرق مختلفةوتمثيلها معنيين بقياس ووصف سطح الأرض ينالطبوغرافي
وفى مجال الجيوديسيا،  .عالية بدقة إلا انه تم الإجماع على أهمية إنتاج هذا النموذجالرغم من اختلاف وتنوع الاهتمام ، 

  ستنتاجتقنيات الاية، حيث يظل أحد اهم هذه العوامل  الأرضالرقميةنمذجة الالعديد من العوامل التى تؤثر على هناك 
Interpolation وعلى الرغم من أهمية طرق الاستنتاج المستخدمة إلا ان الاعتماد عليها . إنتاج النموذجالمستخدمة فى

لذلك فإن دراسة . بمفردها قد يضلل المستخدمين نظرا لتعدد الطرق ولوجود عوامل أخرى قد تؤثر على النتيجة النهائية
يؤدى الى الحصول على تمثيل رقمى عالى باقى العوامل المؤثرة على عملية تكوين النموذج الرقمى للارتفاعات يمكن 

أحد أهم  التحقق من نظريات الإحصاءات المكانية و الإستنتاج دراسة نمط سلوك البيانات وتحليلها وويمثل . الدقة
  .التقنيات المختلفة للإستنتاجبجانب العوامل المطلوب التعرف عليها، 

دراسة العوامل الرئيسية التي  للأسطح من خلال ثلاثى الأبعادتمثيل النتائج مصداقية اختبار ويهدف البحث اساسا الى 
وعلى هذا، فلقد تم إقتراح منهجية .  المختلفةستنتاجالبيانات مع تقنيات الإسلوك  تحليل نمط وهىنتائج ، التؤثر على 

يتم تقييم   وثانيا.أولا يتم دراسة سلوك البيانات من خلال نظريات تحليل النمط. أساسيتينالدراسة من خلال مرحلتين 
ستخدام برمجيات نظم المعلومات الجغرافية والإحصاء ، والإحصاء الجغرافي لتطوير وتطبيق  بإبعض تقنيات الإستنتاج

 . دراسة حالات مختلفة وتقييم المنهجيات المقترحة باستخدام 
 

ABSTRACT 
 
People live on Earth and learn to cope with its terrain. Civil engineers design and construct 
buildings on it; geologists try to study its underlying construction; geomorphologists are 
interested in its shape and the processes by which the landscape was formed; and 
topographic scientists are concerned with measuring and describing its surface and 
presenting it in different ways. Digital terrain modeling is a process to obtain desirable 
models of the land surface. Despite these differences in emphasis and interest, these 
specialists have a common interest, that is, they wish the surface of the terrain to be 
represented conveniently and with confident accuracy. 
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Multiple factors affect the surface modeling. One of the major factors that affect the surface 
model is the applied interpolation technique. Most of the users are using the interpolation 
techniques regardless studying the pattern behaviors that mislead the user about the most 
proper interpolation technique for providing the surface. Therefore, theories of statistics 
and spatial interpolation utilized through 3D surface representation platforms by 
incorporating the spatial pattern analysis will be investigated. 
The main objective of this research is to test the reliability of the results caused by the 3D 
surface representation platforms. Here, the main factors which affect on the results are 
examined, where the pattern analysis methods will be studied with different interpolation 
techniques. The applied methodology is divided into two main steps. Firstly, the pattern 
analysis will be studied. Secondly, different interpolation techniques will be evaluated.  
GIS, statistical, and geostatistical analysis software were used to develop, apply, and 
evaluate the proposed methodologies using different case studies. 
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1. INTRODUCTION 
 
Generally, spatial data is considered as an invaluable source of information to the society. It 
can be divided into planimetric maps (2D surface) that represents the natural and artificial 
features and the topographic maps, which represent also the relief or contours of the 
ground. The second form is the basis of the 3D representation.   
By establishing a three-dimensional data grid using a set of points (X, Y, Z) at any common 
space, the surface modeling can be generated.  
  
The pattern analysis and interpretation of any spatial datasets forms an important part of 
geostatistics where it is highly human dependent. For instance, it is well known that 
different individuals will take different approaches, yielding a large assortment of distinct 
solutions. It is often the case where judgment and experiences play a key role in selecting 
the proper spatial interpolation technique for each particular case. This is partly due to the 
variety of the available spatial interpolation methods, which range from simple intuitive 
predictions to more sophisticated and complex procedures [1]. 
 
The major factors that control the efficiency of the result are: - (1) The applied measuring 
technique, (2) The area of the site, (3) The topography, (4) The spatial interpolation 
technique, in other words the applied mathematical model to create the surface and (5) The 
Spatial Pattern analysis, which defines the quantitative methods, applied for describing and 
analyzing the distribution pattern of spatial data. Herein, the applied data points lies either 
in a regular or irregular (random) grid where the grid data values define the height (the third 
dimension Z-coordinate) above or below the X-Y plane. We are going to focus on the last 
three factors.   
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DEM is produced from different technologies such as Light Detection and Ranging 
(LiDAR) and Interferometric Synthetic Aperture Radar (IFSAR). These remotely-sensed 
methods provide users with high resolution DEM data that have vertical and horizontal 
accuracies in centimeters, making them more desirable, yet costly in both funding and 
processing requirements. For smaller study areas and limited budget, users can obtain 
DEMs by conducting field surveys using global positioning systems (GPS), and then 
interpolate DEM. No matter the source of gathering data, DEM products provide clear and 
detailed rendition of topography and terrain surfaces. These depictions can orient users into 
a false sense of results regarding the accuracy and precision of the data. Potential errors, 
and their effect on derived data and the based output on that data, are often far from user’s 
consideration [2]. 
 
Herein, the attention is directed to the pattern analysis “density of points and their 
distribution” and the topography of the site with the different interpolation techniques in 
order to select the proper one that satisfy minimum uncertainty associated with DEM.  
Since locations of sample points are important for interpolation so, points should be located 
evenly over the area even if it is regularly or randomly spaced. The more the input points 
and the greater their distribution, the more reliable are the achieved results [3]. 
 
2. PATTERN ANALYSIS 
 
Pattern analysis involves analyzing the arrangement of points in an area. It can reveal if the 
distribution pattern is random, dispersed, or clustered. Also, a pattern analysis can detect 
whether the distribution pattern contains clusters of high or low values. Analyzing and 
testing of pattern is performed via many methods, where the famous ones are Nearest 
Neighbor Analysis “NNA”, Moran’s I and G-Statistics [4].  
Nearest Neighbour Analysis is a simple method that analyzes the spatial data distribution 
and depends only on the spatial data position. NNA uses the distance between each point 
and its closest neighbouring point in determining if the point pattern is random, regular or 
clustered [5]. NNA calculates the ratio of the observed average distance between nearest 
neighbours of a point distribution (dobs) (i.e. that for each point, the shortest distance among 
all neighbors becomes the nearest distance, and then averaged using all points) to the 
expected average distance between nearest neighbors as determined by a theoretical 
pattern; the Poisson probability distribution (dexp). It is denoted by the dimensionless 
statistic R, In its simplest form the nearest neighbor statistic, R, compares the observed, 
dobs, with the expected, dexp [6].    

exp

obsdR
d

=            …………….…………… (1) 

If the (R) ratio is less than 1, the point pattern is considered more clustered than random 
where if it is greater than 1; the point pattern is biased to be more dispersed than random.  
 
As Waldo Tobler notes, “I invoke the first law of geography: everything is related to 
everything else, but near things are more related than distant things” so, the correlation 
between the points (in 3-D) plays a major role of obtaining the proper results. 
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Moran’s I is a method for analyzing point pattern, that is based on measuring spatial 
autocorrelation where, the analysis considers not only the points’ position but also the 
variation of third dimension value where the spatial datasets are auto correlated [7].           
Spatial autocorrelation therefore measures the relationship among values of variables 
according to the spatial arrangement of the values [8]. The relationship can be described as 
highly correlated if like values are spatially close to each other, and independent or random 
if no pattern is discerned from the arrangement of values. Moran’s I is computed according 
to Equation (2).  
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Where xi is the value at point i, xj is the value at point i’s neighbour j, n is the number of 
points, and σ2 is the variance of x values with a mean of x¯. The coefficient wij is the 
weight for measuring spatial autocorrelation. Typically, wij is defined as the inverse of the 
distance (d) between points i and j, or 1/dij.The pattern is considered as random (i.e., not 
spatially correlated), if the index value I is 0, while positive I values indicate that adjacent 
points tend to have similar values (i.e. positive spatial autocorrelation) and negative ones 
indicate that adjacent points tend to have different values (negative spatial autocorrelation). 
Moran’s I can only detect the presence of the clustering of similar values, but it cannot tell 
whether the correlation is strong or weak [5].  
This has led to the use of the G-Statistics method, which can separate clusters according to 
their values. G-Statistics index which is based on a specified distance, d, can be defined as 
G(d) and is computed by using Equation(3) 

( )
( )

i jij x x

i j

w d
G d

x x
=
∑ ∑

∑ ∑
  …………….…………… (3)                             

Where xi is the value at position i, xj is the value at position j that is laying within distance 
d of i, and wij(d) is the spatial weight which is based on some weighted distance (e.g. 
inverse distance). G-Statistics is normally distributed method and can be standardized to 
facilitate its interpolation: the positive G values indicate cluster with high values “Strong 
autocorrelation”, while negative values indicate clusters with low values “weak 
autocorrelation” [9]. 

 
3. SPATIAL INTERPOLATION TECHNIQUES 
 
Spatial Interpolation is the process of using points with known values to estimate unknown 
values at other points. It is therefore a means of creating surface data from sample points 
where the surface data can be used for analysis and modelling. Spatial interpolation 
methods can be categorized in several ways. They can be grouped into global and local 
methods. A global interpolation method uses every available known point to estimate an 
unknown value. On the other hand, a local interpolation method uses a sample of known 
points to estimate an unknown value. Conceptually, a global interpolation method is 
designed to capture the general trend of the surface while a local interpolation method deals 
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with the local or short range variation. For many phenomena, it is more efficient to estimate 
the unknown value at a point using a local method than a global where the away points 
have little influence on the estimated value.  Also, spatial methods can be grouped into 
exact and inexact interpolation. Exact interpolation predicts a value at the point location 
that is the same as its known value. So, exact interpolation generates a surface that passes 
through the control points. In contrast, inexact interpolation, predicts a value at the point 
location that differs from its known value. In case of elevations, the exact methods should 
be applied. Finally, the spatial interpolation methods can be deterministic or stochastic.  
A deterministic interpolation method provides no assessment of errors with predicted value. 
On the other hand, a stochastic interpolation method, offers assessment of prediction errors 
with estimated variances. The assumption of a random process is normally required for a 
stochastic method [9].Table (1) shows a classification of spatial interpolation methods [5]. 
 
Table (1): classification of the major spatial interpolation techniques  

Global Local 
Deterministic Stochastic Deterministic Stochastic

Trend surface (inexact) Regression (inexact) Density (inexact) Kriging (exact)*
  Inverse distance weighted (exact)* 
  Splines (exact)*
Since this research is focusing on the applied methods for creating DEM, the local exact 
methods should be used in interpolating elevation data where the contouring surfaces 
should pass the control points. The most applied ones are Splines, Inverse distance 
weighting and the Kriging techniques [10].  
 
3.1. Splines 
Splines is an interpolation method that estimates values using a mathematical function that 
minimizes overall surface curvature, resulting in a smooth surface that passes exactly 
through the input points. Therefore, this method is the best for generating gently varying 
surfaces such as elevation, water table heights, or pollution concentrations [4]. 
Splines interpolation consists of the approximation of a function by means of series of 
polynomials over adjacent intervals with continuous derivatives at the end-point of the 
intervals. Smoothing Splines interpolation enables to control the variance of the residuals 
over the dataset. The solution is estimated by an iterative process. It is also referred to the 
basic minimum curvature technique or thin plate interpolation as it possesses two main 
features: (a) the surface must pass exactly through the data points, and (b) the surface must 
have minimum curvature [1].  
The approximation of thin-plate Splines is calculated according to Equation (4).  
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Where x and y are the coordinates of the point to be interpolated, xi and yi are the 
coordinates of control point i and di

2 = (x-xi)2+ (y-yi)2.  
The component (a+ bx +cy) represents the local trend function. It has the same form as a 
linear or first-order trend surface and (di

2 log di) represents a basis function, that is designed 
to obtain minimum curvature surfaces. The coefficients Ai, a, b, and c are determined by a 
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linear system of equations, where n is the number of control points, and fi is the known 
value at control point i. Herein, the estimation of the coefficients requires n+3 simultaneous 
equations [5]. 
 
3.2. Inverse Distance Weighting (IDW) 
Inverse Distance Weighting (IDW) is one of the simplest and most readily available 
methods. It is based on an assumption that the value at a predicted point can be 
approximated as a weighted average of values at points within a certain cut-off distance, or 
from a given number m of the closest points (typically 10 to 30) [11] where, weights are 
usually inversely proportional to a power of distance. The general equation for the IDW 
method is shown in Equation (5). 
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Where z0 is the estimated value at point 0, zi is the z value at known point i, di is the 
distance between point i and point 0, n is the number of known points used in estimation, 
and k is the specified power. The power k controls the degree of local influence. A power 
of 1.0 means a constant rate of change in value between points (linear interpolation), whiles 
the power of 2.0 or higher suggests that the rate of change in values is higher near a known 
point and the point levels are off away from it. The degree of local influence also depends 
on the number of known points used in estimation [12].  
 
3.3. Kriging 
Kriging is a geostatistical method for spatial interpolation that proves usefulness and 
popularity in many fields. Kriging is not deterministic but extends the proximity weighting 
approach of inverse distance to include random components where exact point location is 
not known by the function. Kriging depends on spatial and statistical relationships to 
calculate the surface [13]. It differs from the other interpolation methods as it can assess the 
quality of the prediction with estimated prediction errors. A unique aspect of geostatistics is 
the use of regionalized variables which are variables that neither totally random (stochastic) 
nor deterministic variables, where regionalized variables describe phenomena with 
geographical distribution (e.g. elevation of ground surface). In general, Kriging consists of 
three main terms: a drift that representing a trend; a spatially correlated term which 
representing the variation of the regionalized variable and a random error term. The 
interpretation of these three terms has led to different Kriging methods for spatial 
interpolation. Kriging uses the spatial autocorrelation or the semivariance γ(h) which 
measures the spatially correlated component between known points, xi and xj, that 
separated by the distance h; and z is the third dimension value. γ(h) is calculated by 
Equation (6) 

21( ) ( ) ( )
2 i jh z x z xγ ⎡ ⎤= −⎣ ⎦       …………….…………… (6)   
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A semivariogram is a graph, which plots γ(h) against h for all pairs of known points in a 
data set. If spatial dependence does exit in a data set, known points that are close to each 
other expected to have small semivariances, and known points that are farther apart are 
expected to have large semivariances. To use semivariogram as interpolator in Kriging, it 
must fit with a mathematical model, where the fitted semivariogram can be used for 
estimating the semivariance at any given distance. A fitted semivariogram can be divided 
into three possible elements: nugget, range, and sill.  Nugget defines the semivariance at the 
distance of 0, while range represents the distance at which semivariance starts to level off, 
and sill is the value of the semivariance at the end of the range. See figure (1) [14]. 
 

 
 

Figure (1): Nugget, Range, and Sill 
 
The most applicable method is the Ordinary Kriging which assumed the absence of a drift. 
It focuses on the spatially correlated term and uses the fitted semivariogram directly for 
interpolation. Equation (7) is applied for estimating the z value at any point.   

0
1

n

x x
i

z z w
=

=∑               …………….…………… (7)                   

Where z0 is the estimated value, zx is the known value at point x, wx is the weight 
associated with point x, and n is the number of sample points. The weight can be derived by 
solving a set of simultaneous Equation (8) 
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Where γ(hij) is the semivariance between known points i, j, γ(hi0) is the semivariance 
between the ith known points and the estimated point 0. λ is a Lagrange multiplier that 
added to ensure the minimum possible estimation. Applying the above equation, the 
Kriging produces a variance measure for each estimated point to indicate the reliability of 
estimation where the variance estimation σ2 is calculated using Equation (9) [5]. 
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To assess the accuracy of the above interpolation techniques, statistical procedures should 
be applied to confirm the consistency of each method. 
 
 
 

γ(h)
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4. VALIDATION TECHNIQUE 
 
The interpolation accuracy can be measured by different methods, where the most 
straightforward one is to evaluate deviations between interpolated surface and the input 
points [15].  
The major applied technique for this approach is the cross validation. Cross validation 
assess the accuracy of the interpolation methods by repeating the following procedure: 

1. Remove a known point from the dataset. 
2. Use the remaining points to estimate the value at the point previously removed. 
3. Calculate the predicted error of the estimation by comparing the estimated with the 

known value. 
After completing the procedure for each known point, one can calculate a diagnostic 
statistics to evaluate the accuracy of the interpolation method. This diagnostic statistics is 
the root mean square (RMS) as expressed in Equation (10) 

2
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Where n is the number of points, zi,act   is the known value of point i, , zi,est is the estimated 
value of point i. 
The interpolation of statistics is based on the rule “A better interpolation method should 
yield to a smaller RMS”. By extension, an optimal method should have the smallest RMS 
[16].  
 
This particular form of the cross validation is especially suitable for relatively dense 
datasets, since removing points from already under-sampled areas can lead to 
misrepresentation of the surface to be interpolated. Despite the wide use of this technique 
for assessing interpolation schemes, one should be aware of its shortcomings. Specifically, 
cross validation will usually overestimate the interpolation error because the estimate is 
being computed at a position where data are actually available. In addition, the computed 
surface and hence the cross-validated estimate may be altered by the removal of the point 
being cross-validated. In practice these issues are unavoidable but with increasing number 
of input data points they have less impact [17]. 
 
Evaluating the predictive accuracy between points can be done by using a check dataset 
that contains un-used data in the interpolation. For each check point the deviation between 
actual and interpolated value is calculated and the overall accuracy is tested. The diagnostic 
statistic of RMS derived from the check dataset can then be used to assess the accuracy of 
the methods. However, in many applications and due to the limited number of input points, 
it becomes difficult to select independent evaluation dataset. Moreover, the accuracy 
information is available only for these independent points and they rarely cover the entire 
area of interest with a sufficient density [15]. 
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5. DATA USED 
 

For the computation process in this research, the following scenario has been followed. 
Sample sets of data that cover about 4 km2 were prepared with variable topographic feature. 
The data derived from 4 raster DEMs with resolution 5 m, where these DEMs represent the 
ground truth (variability) of surface with high conformity. Each DEM is considered as a 
unique dataset that represents different topographic factor ranging from smooth topographic 
surface to complex topographic one. Each dataset is divided into two groups according to 
the distribution of points. A spatial resolution of the DEM determines its application 
properties and ability to represent the terrain features in a desired detail [18]. Therefore, 
each dataset samples were chosen from the original raster DEMs with resolution 25, 50 and 
100 meters, respectively. They are divided as:  

- Group (1) which represents a regular distribution region, where three datasets were 
arranged to cover different densities, the average spacing among points are (25, 50, and 
100 meters respectively).  
- Group (2) represents an irregular distribution region, where another three datasets 
were prepared to cover the same densities, the average spacing among points are (25, 
50, and 100 meters respectively). 

 
5.1. Dataset 1 
The distinguished characteristics of this dataset that it is a flat surface with smooth slope 
where the difference between maximum and minimum elevations is about 1.5 m. 
 

 
Fig (2): Dataset 1 

Group (1)  - Case (1) 

 
Fig (3): Dataset 1 

Group (1)  - Case (2)

 
Fig (4): 1 

Group (1)  - Case (3) 
 

 
Fig (5): Dataset 1 

Group (2)  - Case (1) 

 
Fig (6): Dataset 1 

Group (2)  - Case (2)

 
Fig (7): Dataset 1 

Group (2)  - Case (3) 
 

5.2. Dataset 2 
This dataset represents relatively flat area with gentle slopes where elevations differ from 
each other by about 48 m. 
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Fig (8): Dataset 2 

Group (1)  - Case (1) 

 
Fig (9): Dataset 2 

Group (1)  - Case (2)

 
Fig (10): Dataset 2 

Group (1)  - Case (3) 
 

 
Fig (11): Dataset 2 

Group (2)  - Case (1) 

 
Fig (12): Dataset 2 

Group (1)  - Case (2)

 
Fig (13): Dataset 2 

Group (1)  - Case (3) 
 
 
5.3. Dataset 3 
Herein, the topographic feature became much variable than before where elevations differ 
from each other by about 140 m. 
 

 
Fig (14): Dataset 3 

Group (1)  - Case (1) 

 
Fig (15): Dataset 3 

Group (1)  - Case (2)

 
Fig (16): Dataset 3 

Group (1)  - Case (3) 
 

 
Fig (17): Dataset 3 

Group (2)  - Case (1) 

 
Fig (18): Dataset 3 

Group (2)  - Case (2)

 
Fig (19): Dataset 3 

Group (2)  - Case (3) 
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5.4. Dataset 4 
This dataset represents mountains area with steep slope where difference in elevations 
between minimum and maximum reaches 500 m. 
 

 
Fig (20): Dataset 4 

Group (1)  - Case (1) 

 
Fig (21): Dataset 4 

Group (1)  - Case (2)

 
Fig (22): Dataset 4 

Group (1)  - Case (3) 
 

 
Fig (23): Dataset 4 

Group (2)  - Case (1) 

 
Fig (24): Dataset 4 

Group (2)  - Case (2)

 
Fig (25): Dataset 4 

Group (2)  - Case (3) 
 

6. METHODOLOGY 
 
Since, the objective of this research is to study the major factors affecting the surface 
modeling; the pattern analysis methods will be studied with different interpolation 
techniques. The applied methodology is divided into two main steps. 
•  Firstly, the pattern analysis will be studied for each dataset. This will include the two 

groups with the different 3 cases of data, through the following methods, Nearest 
Neighbor analysis, Moran’I analysis and the G-Statistics analysis methods, where an 
indicator will be implemented to classify if the observed and random distribution is 
statistically significant or not (in our case study, a Z-score is calculated). If the score 
changes between -1.96 and +1.96 (confidence level of 95%), it indicates that there is 
no significant difference between the observed and random distribution statistically in 
spite of the result of indexes (R, I, and G) pattern indication. However, the greater 
amount of Z-score shows significant difference between observed and random 
distribution. As this Z-score expresses the divergence of the experimental result Ind. 
from the most probable result E(Ind.) as a number of standard deviations σ, so Z-score 
can be calculated according to equation (11) [19] 

 
. ( .)Ind E IndZ
σ

−
=         …………….…………… (11) 
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• Secondly, different interpolation techniques will be examined for each dataset, where 
Splines, Inverse Distance Weighted (IDW) and Kriging methods are selected according 
to their suitability with elevation data as they represent the exact methods.   
Recalling that, RMS is the value which validates the interpolation methods with each 
dataset, where two methods were applied. Cross Validation that provides RMS for input 
data points and the other by using evaluation datasets as 100 points was prepared at 
each dataset to represent this evaluation dataset.   
 

7. RESULTS AND ANALYSIS 
 
7.1. First Step: Pattern Analysis 
The statistics values of the four datasets are tabulated. The main items in the tables are the 
index value for each pattern analysis methods with their corresponding Z-score, and pattern 
description, where the value R will represent the index of nearest neighbor analysis method. 
If R is equal to 1, it indicates random pattern; if R is less than 1, the pattern exhibits 
clustering; if R is greater than 1, the trend is toward regular distribution pattern. Recalling 
that Z-Score confirmed this statistic index, where for Z- score values between -1.96 and 
+1.96 indicates random, if it is greater than 1.96, it confirmed regular distribution, and less 
than -1.96 indicates clustered pattern. 
With respect to Moran’s I method, the term I will represent the index; if I is equal 0, it 
means that there is no correlation between points; if I > 0, it directed to positive 
autocorrelation between points, while it implies negative autocorrelation, if the term I < 0. 
About the related Z-score, if it changes between -1.96 and 1.96, it indicates no correlation, 
if Z-score > 1.96, it indicates positive autocorrelation, and if Z-score < -1.96, it indicates 
negative autocorrelation.   
Related to G-statistic method, G value represent the index associated also with Z-score, 
where for G is equal 0 and Z-score changes between -1.96 and +1.96, it indicates no 
correlation,  if G >0 and Z-score > 1.96, it indicates strong correlation, and if G < 0 and Z-
score < -1.96, it indicates weak correlation [19]. 
 
7.1.1. Dataset 1 Results 
The results of dataset 1 with all cases (from case 1 to case 3) of its 2 groups are tabulated. 
R, I, and G indexes as well as their Z-scores are computed and the pattern descriptions are 
summarized.  
 
Table (2): Results of 3 pattern analysis methods for all cases of dataset 1 

  NNA Moran’s I G-Statistics 
  R Z-Score I Z-Score G Z-Score 

Pattern 

Case (1) 2.03 141.61 0.20 589.69 0.0015 14.09 Regular of strong 
(+) correlation 

Case (2) 2.06 73.75 0.19 165.93 0.0015 7.50 Regular of strong 
(+) correlation 

Group 
(1) 

Case (3) 2.08 39.14 0.17 47.22 0.0013 -1.90 Regular of  weak 
(+) correlation 
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  NNA Moran’s I G-Statistics 
  R Z-Score I Z-Score G Z-Score 

Pattern 

Case (1) 1.01 1.64 0.23 425.51 0.0017 11.48 Random of strong 
(+) correlation 

Case (2) 0.98 1.39 0.23 101.80 0.0017 6.96 Random of strong 
(+) correlation 

Group 
(2) 

Case (3) 0.99 -0.53 0.20 30.12 0.0017 -1.80 Random of weak 
(+) correlation 

 
Within the first dataset, by applying nearest neighbor analysis method, the output values 
describe the pattern as regular one for group (1) and irregular for group (2). On the other 
hand, by using Moran’s I analysis method, the points are described as positively correlated 
points. Finally, the G-Statistics method is performed to identify any strong or weak 
correlation. Within our test, this dataset is defined as strong correlated data points for case 1 
and 2 and weak correlated data points for case 3, where this situation expected to be raised 
due to the low density of points 
 
7.1.2. Dataset 2 Results 
By applying the 3 methods for dataset 2 that is relatively flat area. The results of dataset 2 
will be tabulated. R, I, and G indexes as well as their Z-scores are computed. Pattern 
description summarized.    
 
Table (3): Results of 3 pattern analysis Methods for all cases of dataset 2 

  NNA Moran’s I G-Statistics 
  R Z-Score I Z-Score G Z-Score 

Pattern 

Case (1) 2.00 136.38 0.37 1045.44 0.0016 5.77 Regular of strong 
(+) correlation 

Case (2) 2.04 71.44 0.36 303.22 0.0015 2.73 Regular of strong 
(+) correlation 

Group 
(1) 

Case (3) 2.11 38.17 0.34 86.60 0.0013 1.21 Regular of  (+) correlation , 
neither strong nor weak 

Case (1) 1.01 1.42 0.38 691.77 0.0017 6.04 Random of  strong 
(+) correlation 

Case (2) 1.03 1.94 0.40 183.40 0.0017 2.01 Random of  strong 
(+) correlation 

Group 
(2) 

Case (3) 1.03 0.87 0.41 45.84 0.0017 -2.90 Random of  weak 
(+) correlation 

 
The results show that group (1) described as regular according to nearest neighbor analysis 
method, positive correlation related to Moran’s I method, and strong correlated data with 
respect to G-statistics except case (3) that described as random behavior in other words, 
“neither strong nor weak” . For group (2), the nearest neighbor analysis indicate random 
pattern, Moran’s I point to positive correlation and G-statistics describe strong correlation 
except case (3) that described as weak correlation. 
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7.1.3. Dataset 3 Results 
Executing the 3 methods for dataset 3 which is more complicated topographic surface, the 
results of dataset 3 will be tabulated. Indexes associated with their Z-scores are computed. 
As well as pattern description summarized.    

 

Table (4): Results of 3 pattern analysis Methods for all cases of dataset 3 
  NNA Moran’s I G-Statistics 
  R Z-Score I Z-Score G Z-Score 

Pattern 

Case (1) 2.02 167.83 0.21 829.17 0.0013 -24.95 Regular of weak 
(+) correlation 

Case (2) 2.05 87.90 0.20 236.58 0.0012 -12.78 Regular of weak 
(+) correlation 

Group 
(1) 

Case (3) 2.09 45.90 0.18 64.60 0.0011 -6.28 Regular of (+)weak 
correlation 

Case (1) 1.01 1.11 0.22 533.95 0.0014 -19.52 Random of  (+)weak 
correlation 

Case (2) 1.01 0.83 0.22 139.29 0.0014 -10.50 Random of  weak 
(+) correlation 

Group 
(2) 

Case (3) 1.05 2.08 0.20 46.50 0.0014 -6.71 Random of  weak 
(+) correlation 

 
Nearest neighbor analysis indicate regular pattern for group (1), random one for group (2), 
Moran’s I notify positive correlation for the two groups, and finally G-Statistics imply 
weak correlation for the whole cases.    

 

7.1.4. Dataset 4 Results 
Again, applying the 3 methods for dataset 4 that represents the complex topography, the 
results of dataset 4 will be tabulated where indexes associated with their Z-scores are 
computed. As well as pattern description summarized.    
 
Table (5): Results of 3 pattern analysis Methods for all cases of dataset 4 

  NNA Moran’s I G-Statistics 
  R Z-Score I Z-Score G Z-Score 

Pattern 

Case (1) 2.01 140.66 0.19 576.42 0.0015 29.27 Regular of strong 
(+) correlation 

Case (2) 2.04 73.46 0.18 160.06 0.0015 14.52 Regular of strong 
 (+) correlation 

Group 
(1) 

Case (3) 2.10 39.94 0.15 43.68 0.0013 -1.95 Regular of weak 
 (+) correlation 

Case (1) 1.02 2.19 0.20 404.07 0.0017 30.26 Random of  strong 
(+) correlation 

Case (2) 1.01 0.55 0.21 108.74 0.0017 14.04 Random of  strong 
(+) correlation 

Group 
(2) 

Case (3) 1.02 0.88 0.22 35.34 0.0013 -1.80 Random of weak 
(+) correlation 
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For this dataset the same indication recorded as dataset 1. 
To conclude all the previous datasets, figures (26) and (27) show the R index value and the 
Z-score respectively of the nearest neighbor analysis method for the 4 datasets with their 3 
cases of group (1). Figures (28) and (29) plot the Moran’s I index value and the Z-score 
correspondingly for the same datasets “group (1)”. Figures (30) and (31) show the index of 
G-statistics and Z-score for group (1) of the 4 datasets. Figures (32- 37) illustrate the 
equivalent figures for group (2).  
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Fig. (26): Group (1)  
NNA “Ratio Value” 
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Fig. (27): Group (1)  

NNA “Z-Score Value” 
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Fig. (28): Group (1)  
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Fig. (30): Group (1)  

G-Statistics “Ratio Value” 
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Fig. (31): Group (1)  
G-Statistics “Z-Score Value” 
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Fig. (32): Group (2)  
NNA “Ratio Value” 
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Fig. (33): Group (2)  
NNA “Z-Score Value” 
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Fig. (34): Group (2)  

Moran’s I “Ratio Value” 
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Fig. (35): Group (2)  

Moran’s I “Z-Score Value” 
 



 17/23

  

0.0013

0.0014

0.0015

0.0016

0.0017

0.0018

Data Set 1 Data Set 2 Data Set 3 Data Set 4

Case 1 Case 2 Case 3

 
Fig. (36): Group (2)  

G-Statistics “Ratio Value” 
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Fig. (37): Group (2)  

G-Statistics “Z-Score Value” 
 
7.2. Second Step: Comparing Interpolation Techniques 
Locations of sample points are important for interpolation. Ideally, for mapping, points 
should be located evenly over the area. However, samples can be regularly or randomly 
spaced. More the input points and greater their distribution, more reliable of the results can 
be achieved [4]. To assess the interpolation techniques suitability, the samples at different 
factors of topography, density and distribution are taken and evaluated. The RMS value 
calculated for each case using input data points and check points, where 100 check points 
are generated for each dataset. The overall results are compared in order to find the 
minimum statistical errors.   
 
7.2.1. Dataset 1 Results 
For the first dataset with the regular distribution samples, the results of the three 
interpolation techniques are almost the same. All the 25 m, 50 m, and 100 m samplings fit 
the surface trend well by applying the Splines, IDW, Kriging interpolation techniques, 
where RMS values is very small and close to each other. The similar results were obtained 
from analyzing the random samples. This reflects that for flat surface with smooth slope, 
the three interpolation techniques can fit the surface well regardless the number and 
distribution of sample points. However Kriging is relatively better in both weak and strong 
correlated cases. Table (6) summarizes the results. 
To confirm the results, the RMS values for the 100 check points were calculated. They 
provide results as good as the recorded input data, where each of the three interpolation 
techniques fits the surface well. Also, Kriging is the best in all cases.  Table (7) reviews the 
results of the dataset-1 check points.  
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Table (6): Results of 3 interpolation techniques for all cases of dataset 1 “input data points” 
 RMS in m
 Group (1) Group (2) 
 Case (1) Case (2) Case (3) Case (1) Case (2) Case (3) 
Splines 0.036 0.042 0.069 0.015 0.031 0.042 
IDW 0.039 0.046 0.073 0.020 0.029 0.056 
Kriging 0.035 0.041 0.052 0.013 0.028 0.042 

Pattern 
description 

Regular 
High density 

+ Strong 
correlation 
∆H=1.5 m 

Regular 
Medium density 

+ Strong 
correlation 
∆H=1.5 m 

Regular 
Low density 

+ Weak 
correlation 
∆H=1.5 m 

Irregular 
High density 

+ Strong 
correlation 
∆H=1.5 m 

Irregular 
Medium density 

+ Strong 
correlation 
∆H=1.5 m 

Irregular 
Low density 

+ Weak 
correlation 
∆H=1.5 m 

 
Table (7): Results of 3 interpolation techniques for all cases of dataset 1 “check points” 

 RMS in m
 Group (1) Group (2) 
 Case (1) Case (2) Case (3) Case (1) Case (2) Case (3) 
Splines 0.124 0.484 1.352 0.012 0.035 0.041 
IDW 0.389 1.010 2.189 0.021 0.028 0.054 
Kriging 0.164 0.551 1.641 0.012 0.024 0.039 

Pattern 
description 

Regular 
High density 

+ Strong 
correlation 
∆H=1.5 m 

Regular 
Medium density 

+ Strong 
correlation 
∆H=1.5 m 

Regular 
Low density 

+ Weak 
correlation 
∆H=1.5 m 

Irregular 
High density 

+ Strong 
correlation 
∆H=1.5 m 

Irregular 
Medium density 

+ Strong 
correlation 
∆H=1.5 m 

Irregular 
Low density 

+ Weak 
correlation 
∆H=1.5 m 

 
7.2.2. Dataset 2 Results 
For the second dataset, it is observed that the RMS values of case (3) represent relatively 
higher values. The RMS values of Splines and Kriging techniques are close to each other, 
where Splines technique gave relatively better results using input data points. Results 
tabulated at table (8). While table (9) represents the obtainable RMS for the check points. 
The RMS values of Splines and Kriging techniques are close to each other, where Kriging 
technique gave relatively better results for regular distribution, strong correlated cases. 
However Splines gives the best result for weak correlated case. For irregular distribution, 
Splines is a slightly better than the other techniques in both strong and weak correlated 
cases. Table (9) summarizes the results. 

 
Table (8): Results of 3 interpolation techniques for all cases of dataset 2 “input data points” 

 RMS in m 
 Group (1) Group (2) 
 Case (1) Case (2) Case (3) Case (1) Case (2) Case (3) 
Splines 0.124 0.484 1.352 0.071 0.273 1.166 
IDW 0.389 1.010 2.189 0.325 0.799 1.869 
Kriging 0.164 0.551 1.641 0.123 0.421 1.386 
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 RMS in m 
 Group (1) Group (2) 
 Case (1) Case (2) Case (3) Case (1) Case (2) Case (3) 

Pattern 
description 

Regular 
High density 

+ Strong 
correlation 
∆H=48 m  

Regular 
Medium density 

+ Strong 
correlation 
∆H= 48 m 

Regular 
Low density 
+ Random 
correlation 
∆H= 48 m 

Irregular 
High density 

+ Strong 
correlation 
∆H= 48 m 

Irregular 
Medium density 

+ Strong 
correlation 
∆H= 48 m 

Irregular 
Low density 

+ Weak 
correlation 
∆H= 48 m 

 
Table (9): Results of 3 interpolation techniques for all cases of dataset 2 “check points” 

 RMS in m 
 Group (1) Group (2) 
 Case (1) Case (2) Case (3) Case (1) Case (2) Case (3) 
Splines 0.035 0.163 0.502 0.080 0.325 0.830 
IDW 0.253 0.293 1.461 0.339 0.634 1.516 
Kriging 0.018 0.110 0.839 0.156 0.414 0.926 

Pattern 
description 

Regular 
High density 

+ Strong 
correlation 
∆H=48 m  

Regular 
Medium density 

+ Strong 
correlation 
∆H= 48 m 

Regular 
Low density 
+ Random 
correlation 
∆H= 48 m 

Irregular 
High density 

+ Strong 
correlation 
∆H= 48 m 

Irregular 
Medium density 

+ Strong 
correlation 
∆H= 48 m 

Irregular 
Low density 

+ Weak 
correlation 
∆H= 48 m 

 
 

7.2.3. Dataset 3 Results 
 For the third dataset, the RMS values of Splines technique gave relatively better results in 
all cases. Results are tabulated in table (10). This outcome is confirmed when using the 
check points. The results have the same behavior. The irregular RMS values “Group 2” is 
less than the regular one “Group 1”. For both regular and irregular distribution, the best 
results are obtained from Splines technique. Table (11) summarizes the results. 
 

Table (10): Results of 3 interpolation techniques for all cases of dataset 3 “input data 
points” 

 RMS in m 
 Group (1) Group (2) 
 Case (1) Case (2) Case (3) Case (1) Case (2) Case (3) 
Spline 0.866 2.641 6.356 0.253 0.685 2.064 
IDW 2.320 5.195 9.323 0.642 1.565 4.101 
Kriging 1.717 4.094 8.042 0.658 1.462 3.055 

Pattern 
description 

Regular 
High density 

+ Weak 
correlation 
∆H=140 m  

Regular 
Medium density 

+ Weak 
correlation 
∆H= 140 m 

Regular 
Low density 

+ Weak 
correlation 
∆H= 140 m 

Irregular 
High density 

+ Weak 
correlation 
∆H= 140 m 

Irregular 
Medium density 

+ Weak 
correlation 
∆H= 140 m 

Irregular 
Low density 

+ Weak 
correlation 
∆H= 140 m 
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Table (11): Results of 3 interpolation techniques for all cases of dataset 3 “check 
points” 

 RMS in m 
 Group (1) Group (2) 
 Case (1) Case (2) Case (3) Case (1) Case (2) Case (3) 
Splines 1.251 2.015 4.704 0.541 1.566 3.155 
IDW 2.030 3.851 7.002 1.266 2.352 5.120 
Kriging 1.822 2.991 5.868 0.864 1.922 4.075 

Pattern 
description 

Regular 
High density 

+ Weak 
correlation 
∆H=140 m  

Regular 
Medium density 

+ Weak 
correlation 
∆H= 140 m 

Regular 
Low density 

+ Weak 
correlation 
∆H= 140 m 

Irregular 
High density 

+ Weak 
correlation 
∆H= 140 m 

Irregular 
Medium density 

+ Weak 
correlation 
∆H= 140 m 

Irregular 
Low density 

+ Weak 
correlation 
∆H= 140 m 

 
7.2.4. Dataset 4 Results 

 
For the fourth dataset, the Splines technique is the best interpolation techniques in all 
cases. Group 2 which represent the irregular distribution gave smaller RMS values than 
Group 1 which define the regular distribution. The results tabulated in table (12). 
Within the check points procedure, almost the same behavior were recorded, where 
Splines considers the best interpolation technique in all cases. Herein, the RMS of 
regular distribution cases “group 1” is smaller than the RMS of irregular distribution 
cases “group 2”. As a final conclusion Splines is the best techniques in both cases at 
input data points and at check points. The results summarizes at table (13). 

 
Table (12): Results of 3 interpolation techniques for all cases of dataset 4 “input data 
points” 

 RMS in m 
 Group (1) Group (2) 
 Case (1) Case (2) Case (3) Case (1) Case (2) Case (3) 
Splines 1.29 4.64 15.22 0.77 3.80 11.24 
IDW 4.45 12.31 29.35 4.27 10.43 22.53 
Kriging 4.22 10.27 24.39 3.31 8.86 15.03 

Pattern 
description 

Regular 
High density 

+ Strong 
correlation 
∆H=500 m 

Regular 
Medium density 

+ Strong 
correlation 
∆H=500 m 

Regular 
Low density 

+ Weak 
correlation 
∆H=500 m 

Irregular 
High density 

+ Strong 
correlation 
∆H=500 m 

Irregular 
Medium density 

+ Strong 
correlation 
∆H=500 m 

Irregular 
Low density 

+ Weak 
correlation 
∆H=500 m 
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Table (13): Results of 3 interpolation techniques for all cases of dataset 4 “check points” 
 RMS in m 
 Group (1) Group (2) 
 Case (1) Case (2) Case (3) Case (1) Case (2) Case (3) 
Splines 0.28 1.31 6.16 0.79 3.18 10.07 
IDW 2.01 4.70 14.19 4.37 9.56 22.51 
Kriging 2.20 5.61 14.02 2.53 7.09 13.84 

Pattern 
description 

Regular 
High density 

+ Strong 
correlation 
∆H=500 m 

Regular 
Medium density 

+ Strong 
correlation 
∆H=500 m 

Regular 
Low density 

+ Strong 
correlation 
∆H=500 m 

Irregular 
High density 

+ Strong 
correlation 
∆H=500 m 

Irregular 
Medium density 

+ Strong 
correlation 
∆H=500 m 

Irregular 
Low density 

+ Strong 
correlation 
∆H=500 m 

 
The following table summarizes the above results and defines the proper interpolation 
technique for different alternatives. 
 
Table (14): Summary of the Results  

 Regular Irregular 

 
Strong 
pattern 

Weak 
pattern  

Strong 
pattern 

Weak 
pattern 

Smooth (∆H=0 - 5 m) Kriging Kriging Kriging Kriging 
More Complicated (∆H=5 - 150 m) Kriging Spline Spline Spline 
Complex (∆H=> 150 m) Spline Spline Spline Spline 

 
8. CONCLUSIONS 
 

This research is prepared to test the major factors that control the efficiency of surface 
modeling in order to select the proper interpolation technique for representing the 
elevation data. Herein, some of these factors are examined, which comprised of two 
main parts. The first part is the pattern analysis that evaluated the distribution and 
density of data points, where three major methods are performed for fulfillment. They 
are NNA; Moran’s I, and G-statistics. The second one is the applied interpolation 
techniques to create the surface, where three well-known interpolation techniques are 
examined; Splines, IDW, and Kriging. These two stages applied for four different 
datasets, which represents various topographic factors ranging from smooth surface to 
complex topographic one. An experimental approach was followed which allowed the 
relative performances of the three interpolators to be compared under different 
conditions of data density, distribution and topographic surface. Recalling that the 
assessment of the results depends on RMS statistics value computed from check points 
rather than input points.  
 
Based on RMS statistical values, the following can be concluded: 
• The results were consistent with expectations of the knowledge of sampling theory 

in that the accuracy of interpolation generally improved with sample point’s 
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density; regular distributions of sample points usually captured more accurately the 
trend in strong positive correlated data sets; and irregular distributions produced 
slightly more accurate results when the sample data were spatially positive 
correlated with random or weak correlation. 

• In case of smooth topographic surface, the 3 interpolation techniques can fit the 
surface well regardless the number and distribution of sample points. However the 
best results in both strong and weak correlated cases come from Kriging method. 

• For more complex surface, Splines and Kriging gave relatively better results, 
however, Kriging acts well with regular point’s distribution in case of strong 
correlated points in spite Splines gave relatively better results in case of weak 
correlation. For irregular distribution in both strong and weak correlated cases 
Splines represents the best method. 

• For the mountain area with steep slopes, Splines method produced smoothest 
surface, which fits well in all cases.  
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